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We analyze populations of Kuramoto oscillators with a particular distribution of natural frequencies. In-
spired by networks where there are two groups of nodes with opposite behaviors, as for instance, in power-
grids where energy is either generated or consumed at different locations, we assume that the frequencies can
take only two different values. Correlations between the value of the frequency of a given node and its
topological localization are considered in both regular and random topologies. Synchronization is enhanced
when nodes are surrounded by nodes of the opposite frequency. The theoretical result presented in this paper
is an analytical estimation for the minimum value of the coupling strength between oscillators that guarantees
the achievement of a globally synchronized state. This analytical estimation, which is in a very good agreement
with numerical simulations, provides a better understanding of the effect of topological localization of natural
frequencies on synchronization dynamics.
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I. INTRODUCTION

During the last decade, the realization that many observed
complex systems in nature and society are intrinsically re-
lated to nontrivial patterns of interactions has created a great
interest in what we nowadays know as complex networks
theory �1–5�. Once the basic statistical properties of the in-
dividual constituents �degree distributions, clustering coeffi-
cients, distances, diameters and so on� were analyzed in de-
tail �see Ref. �6� for a survey of measurements� the attention
turned to the correlations among neighbors. Examples of this
are degree assortativity �7�, degree-degree correlations �8�,
or, even, what is known as the rich-club coefficient �9�. From
the topological point of view, at higher scales complex net-
works are usually organized in groups that have a dense in-
ternal connectivity. These groups are known as functional
groups in biology or as network communities in the social
sciences. The analysis of these mesoscopic structures has
also received much attention from the statistical physics
community �10,11�. It has been also clarified how topologi-
cal complexity gives rise to a complex dynamical behavior.
Complexity results not only from the appearance of emergent
behaviors from simple dynamical units, but an important part
of this collective behavior lies precisely in the interaction
patterns �5,12�. Among the many dynamical behaviors that
have been considered in the statistical physics literature, one
of the most intensively analyzed is that of synchronization.
We should understand the phenomenon of synchronization as
an emergent cooperative behavior, where units with similar
individual behaviors develop a coordinated collective output,
in which all units follow the same evolution in time �13�.
One of the paradigmatic models for the explanation of this

widely occurring phenomenon goes back to Kuramoto
�14,15�. In this model, units are characterized only by their
phases �i, which evolve according to the equation

�̇i = �i + ��
j

aij sin�� j − �i� . �1�

Here �i is the natural frequency of unit i, � is the coupling
strength, and aij is the connectivity matrix �aij =1 if i and j
are connected, 0 otherwise�. This set of equations gives rise
to two qualitative behaviors that can be easily understood
from the model. The first term makes the units to follow their
natural frequencies �i �in general these frequencies are not
identical, but given by a certain distribution�. The second one
makes the phases to approach each other. If the first term
dominates we have incoherent behavior given by a distribu-
tion of effective frequencies, �̇i, whose precise values de-
pend strongly on the network topology.

If the second one dominates, we observe a coherent be-
havior where all the phases approach and the effective fre-
quencies become equal, settling the system into a synchro-
nized state. Consequently, there must be a transition from an
incoherent to a synchronized state. This transition is typically
characterized by an order parameter r, defined through the
equation

rei� = �
j

ei�j , �2�

where � is a global phase �not constant� �14,15�. This tran-
sition has been widely analyzed for symmetric distributions
of frequencies for regular �15� as well as complex �16� to-
pologies. Frequencies are usually assumed to be randomly
distributed across the network and no particular consider-
ation about the correlation between frequency and network
location has been made until quite recently. In particular, in
Ref. �17� a uniform distribution of natural frequencies in
different topologies has been considered. It has been found
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that, when frequencies between neighbors are negatively cor-
related �i.e., nodes with positive frequency, taken from a
symmetric interval, tend to be surrounded by nodes with
negative frequencies� the network is more easily synchro-
nized. Moreover, Ref. �18� studied the synchronization in
Erdös-Rényi networks when adaptively changing the topol-
ogy of the interaction network to enhance synchronization.
One observes the emergence of clusters, characterized by
similar values of nominal frequencies, which were able to
synchronize individually significantly below the global syn-
chronization threshold. The resulting interaction network
eventually changed its topology. Namely it evolved from its
initial random structure toward a small-world pattern.

Following this research line, we will analyze here the cor-
relation �or anticorrelation� between frequencies and local-
ization in the network, but in a somewhat different frame-
work. We assume that the frequencies of the oscillators are
distributed in a bipolar way having values either −1 or +1.
We take +1 and −1 without loss of generality. On the one
hand, the fact that the distribution of frequencies is bipolar
does not imply it to be symmetric in general. Nevertheless
the frequency distribution can be shifted arbitrarily by trans-
forming it into a comoving frame of reference and the inter-
est lies only on the phase and frequency differences and not
on absolute values. On the other hand, we are only interested
on the relative importance of the two terms, the frequency
values and the coupling strength; fixing one of these values
�+1 and −1 in our case� just fixes the time scale. This par-
ticular distribution �which is mathematically described as the
sum of two delta functions� can also be understood as a
limiting case of a bimodal distribution of natural frequencies,
which has been analyzed so far in populations of all-to-all
coupled Kuramoto oscillators �19–21�, i.e., without consid-
ering network effects.

Also from a practical point of view, this bipolar distribu-
tion can be related to the electrical power-grid, where energy
is either generated or consumed and hence nodes play
complementary roles. Actually, generators have natural fre-
quencies slightly above the network frequency �50 or 60 Hz�
while machines have natural frequencies slightly below. If
we consider the system in a corotating frame �at 50 Hz� it
turns out that generators have positive small frequencies and
machines have negative small frequencies that corresponds
to the bipolar distribution considered in our work. As it is
shown in Ref. �22�, Kuramoto-like equations can be derived
from swing and power flow equations using various simpli-
fications, as for example, assuming uniform machines and
generators. Although, an ingredient �an inertia term� enters
the description, which can be of crucial importance �23,24�.
The final goal of the power grid is to work in a globally
synchronized way and the lack of synchronization can result
in serious damages.

Finally, as we will show later, a bipolar distribution al-
lows one to calculate analytically the synchronization thresh-
old in a regular lattice and to determine it approximately in
the general case. This last point is, actually, a key contribu-
tion to the literature on dynamics on networks, where the
number of exact results is scarce. Our paper is organized as
follows: Sec. II introduces the dynamical model and the pro-
cedure used to distribute the natural frequencies over the

network. Then, the influence of the natural frequencies dis-
tribution on two models of random networks �a regular ran-
dom network and a Barabasi-Albert scale-free network� is
analyzed numerically in Sec. III. This study continues in Sec.
IV by carrying out analytical calculations for the case of
regular networks and is extended in Sec. V, providing a good
approximation for the case of random networks. Section VI
summarizes our conclusions.

II. DYNAMICAL MODEL AND RESHUFFLING
PROCEDURE

We consider an undirected graph G which is composed of
a set of N nodes and a set of L links, and whose adjacency
matrix is aij. At each node of the network there is an oscil-
lator whose phase evolves according to Eq. �1� and is, hence,
coupled to a set of neighbors. We assign natural frequencies
+1 to half of the population and −1 to the other half at
random. Starting from initial random phases, we let the sys-
tem evolve for a time long enough to reach a stable state in
which all oscillators have a bounded frequency �̇i �which in
general is not constant�.

Since the in the interaction term of the oscillators equa-
tions is an odd function and the connectivity matrix is sym-
metric, summing up the complete set of equations of motion
we always get

�
i

�̇i = �
i

�i = 0. �3�

Therefore, one possible solution is �̇i=0 for all i, which cor-
responds to the synchronized state. However, in order for this
state to be reached, the coupling needs to be strong enough
to overcome the natural frequency distribution �in our case
either +1 or −1�. Hence, for weak coupling we expect the
system to develop a nonhomogeneous distribution of effec-
tive frequencies �̇i, corresponding to a nonsynchronized
state. A transition from one state to the other is produced at
some critical value of the coupling strength, whose determi-
nation is one of the goals of this paper. In order to check, in
a controllable way, the dependence of the critical value on
the precise location of the respective oscillators, we present a
parameter that quantifies this correlation. For a single node,
we define its frequency similarity as

Si =
Ni��i�

Ni
, �4�

where Ni is the number of neighbors of node i and Ni��i�
specifies how many out of them have the same natural fre-
quency as node i. Furthermore, we define the overall fre-
quency similarity of the network by the mean value

SG = �Si� . �5�

In a similar framework, Brede �17� analyzed a network of
Kuramoto oscillators in which the natural frequencies were
taken from a uniform distribution in the interval �−1,+1�. By
switching the frequencies of neighboring oscillators such that
they tend to be anticorrelated, the author showed that this
procedure enhances the synchronizability of the networks in
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the sense that the critical coupling necessary for the synchro-
nization transition is decreased.

In the following we will propose a mechanism that does
both, either maximizes or minimizes the frequency similarity
of the network and hence allows us to study its impact on the
network dynamics. We proceed as follows �31�.

�1� First, we randomly assign the frequency +1 to one half
of nodes and the frequency −1 to the other half. Then, we
measure the value of network similarity.

�2� If either the current value of similarity is close enough
to the desired value or the number of iterations exceeded a
predefined limit, the procedure is terminated. Otherwise we
continue to the next step.

�3� We randomly choose two nodes i and j with different
frequencies and we evaluate whether the exchange of their
frequencies increases or decreases the value of network simi-
larity �see Fig. 1�. When the new value of similarity is closer
to the desired one, the swap operation is accepted and the
algorithm continues with the processing of step 2.

III. SIMULATION RESULTS FOR RANDOM NETWORKS

Following the procedure outlined above, we have per-
formed simulations for two types of random topologies. On
the one hand scale-free �SF� networks grown by the prefer-
ential attachment mechanism proposed by Barabasi and Al-
bert �25�. On the other hand random regular �RR� graphs for
which the number of links of each node is constant but ran-
domly distributed to the rest of nodes �26�. In both cases we
take N=500 nodes and an average connectivity equal to 3
�for the RR graph, 3 is the number of links for each node�.

In Fig. 2 we show the usual order parameter r as a func-
tion of coupling strength �, Eq. �2�, for these two types of
networks. Unexpectedly, r values do not increase monotoni-
cally with �, but show a local maximum at low values of �
�around 0.25 for the RR and 0.1 for the SF�. This phenom-
enon can be explained as a result of local synchronization
among neighboring oscillators with the same natural fre-
quency when � is small. As the coupling strength is high
enough to let these oscillators to interact, they tend to syn-

chronize their phases, leading to higher values of the r order
parameter �which is a measure of global phase similarity�.
This effect disappears for higher values of �, as the system
evolves toward a global synchronization. Consequently, tak-
ing into account that r does not clearly differentiate between
local and global synchronization, we adopt the following or-
der parameter:

r� =� 1

N
�
i�N

��̇i − ����2, �6�

which is a measure of the effective frequency dispersion
�27�. In our case, for a coupling strength of zero the order
parameter is 1, whereas in the synchronized state it is equal
to 0, facilitating a clear distinction between these two states.

In the three panels of Fig. 3, we can see how the transition
can be very well characterized by this order parameter. In the
top panel we show the network with the random allocation of
the natural frequencies, whereas in the lower panels we have
the behaviors corresponding to the extreme values of net-
work similarity. From this comparison, we get a twofold
message. First, SF networks synchronize more easily than
RR networks, which is in agreement with the results of Ref.
�28�. Second, low similarity enhances synchronizability
whereas high similarity makes it harder. This last conclusion
is the same that was obtained in Ref. �17� when dealing with
global synchronization. The same author, however, also real-
ized that high similarity can be better for local synchroniza-
tion �29�. The phenomena of local synchronization was also
analyzed in a temporal perspective in Ref. �30�. In this paper,
a population of identical oscillators gets partially synchro-
nized at different time scales that can be related to topologi-
cal scales. In the case presented here of nonidentical oscilla-
tors, this could be achieved by introducing a discrete �but
large� set of natural frequencies, one for each cluster to be
synchronized. Similar results �i.e., formation of cluster with
similar frequencies� were also observed in Ref. �18�, as the
links were locally reshuffled, increasing the similarity of fre-
quencies in the local neighborhood of nodes.

FIG. 1. Illustration of the swap operation between nodes i and j
in the reshuffling procedure. To represent visually the bimodal dis-
tribution of frequencies, we assign colors to nodes according to
their nominal frequencies �i. Column �a� corresponds to the itera-
tion step t; two nodes i and j are chosen at random and we compute
their frequency similarity Si and Sj. Column �b� represents the it-
eration step t+1, where the frequencies of the nodes have been
interchanged since the overall network similarity increases.

0 0.25 0.5 0.75 1 1.25 1.5 1.75σ
0

0.2

0.4

0.6

0.8

1

〈r
〉

RR network
SF network

FIG. 2. �Color online� Order parameter r �see Eq. �2�� as a
function of the coupling strength � for random allocations of natu-
ral frequencies on two types of networks. Circles and squares cor-
respond, respectively, to a RR network with similarity SG=0.44 and
a Barabasi-Albert SF network with similarity SG=0.624 �number of
nodes N=500 in both cases�. Each point is an average over 30
independent simulations with initially uniformly distributed random
phases and the error bars show the standard deviation.
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Here we notice that for low similarity the two network
types show almost the same behavior, while for high simi-
larity, which is in general worse for the synchronization, the
SF network synchronizes more easily than the RR one. Ac-
tually, the SF network shows only a small effect of the fre-
quency similarity of the network but for the RR network it is
evident. These results can be explained from synchronization
among neighboring oscillators. When the frequency similar-
ity of the network is small the system is more easily synchro-
nized because the interaction is more effective, phases of
neighboring units can be larger. On the contrary, for a large
frequency similarity nodes are surrounded by nodes of the
same frequency and the system is locally stable; however
this local synchronization is responsible for the difficulty in
achieving the global one. Oscillators only interact along the
borders of regions of opposite frequencies and the core of
these regions burdens the advance of the synchronization
wave, then the larger the regions of same frequency the
harder to be synchronized.

IV. ANALYTICAL APPROACH FOR REGULAR LATTICES

Analyzing the above mentioned effects in regular one-
dimensional lattices has several advantages: �i� we can con-
struct ad hoc networks with extreme values of the network
similarity parameter, �ii� we can perform some exact calcu-
lations, and �iii� we can test how well the exact results serve
as an approximation for general random networks.

Let us first consider a one-dimensional ring with only
nearest-neighbor connections. The two extreme cases are as
follows:

�a� A ring with alternating natural frequencies +1 and −1
�see Fig. 4�a�� and in this case SG=0. For symmetry reasons,
we can assume that all units with natural frequency +1 have
the same frequency �̇+ and phase �+ in the synchronized
stationary state. The same holds for the negative ones with
frequency �̇− and phase �−. Then it is easy to find the fol-
lowing relation for any node with positive frequency:

�̇+ = 1 + 2� sin��− − �+� . �7�

In the synchronized state the left-hand-side of this equation
is 0. Then the coupling has to verify

� =
1

2 sin��+ − �−�
. �8�

and since the sine function is bounded ��1 /2, defining the
critical value of �, �c=1 /2, above which synchronization
can exist �it is a necessary but not sufficient condition�.

�b� In this case we have half the ring with positive natural
frequencies and the other half with negative natural frequen-
cies, and hence SG=1–2 /N. We number the positive natural
frequencies in clockwise direction starting from the leftmost
point �white colored in Fig. 4�b�� Summing up the set of Eq.
�1� from 1 to N /2 all coupling terms cancel each other out
apart from the first and the last ones,

�̇1 + ¯ + �̇N/2 =
N

2
+ � sin���N/2�+1 − �N/2� + � sin��N − �1� .

�9�

Again, if the system is synchronized, the left-hand side of the
equation equals 0. On the right-hand side, we find two
equivalent contributions to the coupling, the two links con-
necting oscillators sitting on the border of the two regions
�defined by the two different values of natural frequencies�.
We find that the largest phase difference between any pair of
nodes occurs precisely at the border links, and then those are
the corresponding terms that �simultaneously� will approach
the minimum value of −1. Then, in this case, we find that the
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SF network(a)

FIG. 3. �Color online� Synchronization �averaged stationary
value of the proposed order parameter r�� as a function of the

coupling strength � for RR and SF networks �N=500 and k̄=3� and
different network similarities. �a� Original network similarity �SRR

=0.467, SSF=0.475�. �b� Low network similarity �SRR

=0.099, SSF=0.144�. �c� High network similarity �SRR

=0.904, SSF=0.859�. Each point corresponds to an average over
30 independent simulations with uniformly distributed random
phases as initial conditions and the error bars stand for the standard
deviation. The vertical dashed lines correspond to the approximate
analytical solutions for the critical value as calculated in Sec. V.

FIG. 4. Distributions of natural frequencies with low �left� and
high �right� network similarity on two regular lattices with node
degrees 2 �top� and 4 �bottom�. White and black colors correspond,
respectively, to +1 and −1 natural frequencies. See main text for
details.
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minimum value for the coupling that allows synchronization
is �c= N

4 . For the sake of completeness we have also consid-
ered one-dimensional lattices with next-nearest neighbors.

�c� The same geometry as case �a� but with two additional
connections to identical oscillators for each one �see Fig.
4�c��. Now one has SG=1 /2. We can also make the same
assumption as before and the result is unchanged with re-
spect to �a� because the zero phase difference between iden-
tical units. Hence we get exactly the same critical value �c
=1 /2.

�d� This corresponds to add two next-nearest neighbors to
case �b� �see Fig. 4�d�� and SG=1–3 /N. Analogously to case
�b� we obtain summing the equations for nodes 1 , ¯ , N

2 :

�̇1 + ¯ + �̇N/2 =
N

2
+ � sin���N/2�+1 − ��N/2�−1�

+ � sin���N/2�+1 − �N/2�

+ � sin���N/2�+2 − �N/2� + � sin��N − �1�

+ � sin��N−1 − �1� + � sin��N − �2� .

�10�

As before, we can assume that the difference between these
phases maximizes the modulus of the sine terms. Then in this
case we have, �c= N/2

6 =N /12.
In general, we can say that for these simple and symmet-

ric structures, the predicted values agree very well with those
obtained in the simulations. For cases �a� and �c� the only
assumption is that white and black clusters have common
effective frequencies and phases, although different among
them. However, in cases �b� and �d� we rely on the fact that
the maximum phase difference between any two neighboring
nodes is produced at the border between black and white
clusters. This is what we have also observed in the simula-
tions �see Fig. 5�.

V. GENERALIZATION TO RANDOM NETWORKS

Finally, we present a possible extension of these results to
the general case of random networks. Let us consider a net-
work with a very low similarity, so we can assume that a unit
with natural frequency �i is surrounded by Ni��i��0 neigh-
bors with the same frequency and by Ni−Ni��i� nodes of
opposite sign. We can assume as for case �a� in the previous
section, now it is an approximation not as exact as before,
that all positive units have the same frequency and �̇+ and
phase �+, and the same assumption for the negative ones.
Under this hypothesis we have:

�̇i = �i + �Ni − Ni��i��� sin��−�i
− ��i

� �11�

and then the minimum value of the coupling to compensate
the frequency 	�i	=1 is 1 / �Ni−Ni��i��. This has to happen
for all the nodes simultaneously in the network and, hence,
we will have to look for the global maximum:

�c = max
i

1

Ni − Ni��i�
. �12�

On the contrary, for high similarity networks we can proceed
in a similar way as in cases b� and d� before. Take a group,
A, of connected oscillators with the same natural frequency
�A surrounded by oscillators with frequency −�A, and sum
up all their equations in the synchronized state

0 = NA · �A + � �
i�A,j�A

aij sin�� j − �i� . �13�

Now we can make the approximate assumption that the
phase difference that maximizes the modulus of the sine
terms again is at the borders between groups of different
sign. Then the minimum value of � that can fulfill Eq. �13� is
NA /LA, where LA is the number of links pointing out of the
group A. Again, since this has to be verified for any group,
the critical value of the coupling will be

�c = max
A

NA

LA
, �14�

which contains our previous result for isolated nodes �12� as
a particular case. In this way, we can take Eq. �14� as a result
valid for any configuration, no matter how low or high is the
similarity. We have tested this approach on scale-free and
regular random networks finding good agreement between
this prediction and numerical results �see Fig. 3�. Our result
is exact only for a particular case of symmetric organization.
However, notice that simple ideas providing results on regu-
lar networks are only rarely so easy to generalize to any kind
of network topology. Furthermore, this analysis coincides
with the qualitative explanation at the end of Sec. III. We
discussed there that the global synchronization for networks
of high frequency similarity was burdened by the size of
large regions of identical frequency, which explain why they
are harder to synchronize than networks of lower frequency
similarity.
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FIG. 5. �Color online� Synchronization in one-dimensional
regular networks �N=500� for different degrees and network simi-
larities. Labels correspond to those of Fig. 4. Averaged frequency
dispersion ��r��� as a function of the coupling �. Vertical dashed
lines indicate our analytical estimate for the minimum coupling
strength needed for synchronization �c �0.5 in cases �a� and �c�, 125
in case �b� and 41.6 in case �d��.
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VI. CONCLUSIONS

In this paper we have studied synchronization in the
population of Kuramoto oscillators with a bipolar distribu-
tion of natural frequencies. Such scenario can, for example,
be relevant for special cases when the network is optimized
with respect to local or global synchronization �17,29�. It can
also be seen as a proxy model for power-grid networks
where there are two complementary populations of nodes
either generating or consuming energy and the final goal is to
achieve a complete synchronized state where electricity is
distributed in a well defined global frequency �22�.

First, we have analyzed the synchronization on random
networks under different conditions, controlling the level of
frequency similarity. We present frequency similarity of a
network as a measure of the frequency similarity of neigh-
boring nodes with respect to the frequency they have. We
find a strong impact of the topological distribution of fre-
quencies on the synchronization process. When the fre-
quency similarity is low, the effect of network topology is
only marginal. When increasing the similarity, the role of
network topology becomes stronger, e.g., synchronization in
scale-free networks becomes easier than in regular random
networks due to the influence of hubs.

Furthermore, we have gone beyond the results in Refs.
�17,29� by calculating exactly the minimum value of cou-

pling strength that is necessary for global synchronization in
simple regular networks. Generalizing this particular case,
we obtain a simple method to estimate the synchronization
threshold for arbitrary network topologies. Altogether, it is
sufficient to count the size NA of interconnected clusters of
nodes, which have the same natural frequency �A and the
number of links LA connecting these clusters with the nodes
of opposite frequency. Then, the maximal ratio NA /LA calcu-
lated over all clusters present in the network gives us an
estimate for the coupling strength sufficient for global syn-
chronization. This general result computed in terms of the
topological distribution of opposite frequencies provides an
accurate estimation of a dynamical property of the complete
network.
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